Математика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Окружность с центром в точке \(O\) вписана в ромб \(ABCD\) и касается его сторон \(AB\), \(CD\) и \(AD\) соответственно в точках \(F\), \(K\) и \(P\).
а) Докажите, что прямая \(FP\) параллельна диагонали ромба \(BD\).
б) Найдите длину диагонали \(BD\), если известно, что \(FP=12\) и \(PK=5.\)
Окружность с центром \( O \), вписанная в прямоугольный треугольник \( ABC \), касается гипотенузы \( AB \) в точке \( M \), а катета \( AC \) — в точке \( N \), \( AC < BC\). Прямые \( MN \) и \( CO \) пересекаются в точке \( K \).
а) Докажите, что угол \( CKN \) в два раза меньше угла \( ABC \).
б) Найдите \( BK \), если \( BC = 3 \sqrt{2} \).
Окружность с центром \( O \), вписанная в прямоугольный треугольник \( ABC \), касается гипотенузы \( AB \) в точке \( M \), а катета \( AC \) — в точке \( N \), \( AC < BC\). Прямые \( MN \) и \( CO \) пересекаются в точке \( K \).
а) Докажите, что угол \( CKN \) в два раза меньше угла \( ABC \).
б) Найдите \( BK \), если \( BC = 5 \sqrt{2} \).
Точки \( B_1 \) и \( C_1 \) лежат на сторонах соответственно \( AC \) и \( AB \) треугольника \( ABC, \) причём \( AB_1 : B_1 C = AC_1 : C_1 B . \) Прямые \( BB_1 \) и \( CC_1 \) пересекаются в точке \( O. \)
а) Докажите, что прямая \( AO \) делит пополам сторону \( BC. \)
б) Найдите отношение площади четырёхугольника \( AB_1OC_1 \) к площади треугольника \( ABC, \) если известно, что \( AB_1 : B_1 C = AC_1 : C_1 B = 1 : 3.\)
На отрезке \( BD \) взята точка \( C \). Биссектриса \( BL \) равнобедренного треугольника \( ABC \) с основанием \( BC \) является боковой стороной равнобедренного треугольника \( BLD \) с основанием \( BD \).
а) Докажите, что треугольник \( DCL \) равнобедренный.
б) Известно, что \( \cos \angle ABC = \dfrac{3}{4} \). В каком отношении прямая \( DL \) делит сторону \( AB \)?
Окружность, построенная на стороне \( AD \) параллелограмма \( ABCD \) как на диаметре, проходит через точку пересечения диагоналей параллелограмма.
а) Докажите, что \( ABCD \) - ромб.
б) Эта окружность пересекает сторону \( AB \) в точке \( M \), причём \( AM : MB = 1 : 2 \). Найдите диагональ \( AC \), если известно, что \( AD = 2 \sqrt{3} \).