Математика. ЕГЭ 13

Математика. ЕГЭ

Задания для подготовки

Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников

Задание 13. Вариант 6

а) Решите уравнение \( 19 \cdot 4^x - 5 \cdot 2^{x+2} + 1 = 0. \)

б) Найдите все корни этого уравнения, принадлежащие отрезку \( [ -5; \, -4 ] \) .

Показать решение...


Задание 13. Вариант 7

а) Решите уравнение \( \dfrac{2 \sin^2 x - \sin x}{2 \cos x - \sqrt{3}} = 0\).

б) Найдите все корни этого уравнения, принадлежащие отрезку \( \left[ \dfrac{3 \pi}{2}; \, 3 \pi \right] \).


Задание 13. Вариант 8

а) Решите уравнение \( \dfrac{2 \cos x - \sqrt{3}}{\sqrt{7 \sin x}} = 0 \).

б) Найдите все корни этого уравнения, принадлежащие отрезку \( \left[ \pi ; \dfrac{5 \pi}{2} \right] \).


Задание 13. Вариант 9

а) Решите уравнение $$ \left( 16^{\sin x} \right)^{\cos x } = \left( \frac{1}{4} \right)^{\sqrt{3} \sin x}. $$

б) Найдите все корни этого уравнения, принадлежащие отрезку \( \left[ 2 \pi ; \, \dfrac{7 \pi}{2} \right] \).


Задание 13. Вариант 10

а) Решите уравнение \( 2 \sin^4 x + 3 \cos 2x + 1 = 0 \).

б) Найдите все корни этого уравнения, принадлежащие отрезку \( [ \pi ; \, 3 \pi ] \).