Задание 5. Информатика. ЕГЭ 2024. Основная волна. 07.06.2024

Просмотры: 610
Изменено: 24 ноября 2024

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. Далее эта запись обрабатывается по следующему правилу:
    a) если сумма цифр двоичной записи числа чётная, то к этой записи справа дописывается \(0\), а затем два левых разряда заменяются на \(10\);
    б) если сумма цифр двоичной записи числа нечётная, то к этой записи справа дописывается \(1\), а затем два левых разряда заменяются на \(11\).
  3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа \(6 = 110_2\) результатом является число \(1000_2 = 8\), а для исходного числа \(4 = 100_2\) это число \(1101_2 = 13\).

Укажите минимальное число \(N\), после обработки которого с помощью этого алгоритма получается число \(R\), большее \(50\).

В ответе запишите это число в десятичной системе счисления.

Решение:

Python


def R(N):
    bn = bin(N)[2:]
    if bn.count('1') % 2 == 0:
        tmp = '10' + bn[2:] + '0'
    else:
        tmp = '11' + bn[2:] + '1'

    return int(tmp, base=2)

#print(R(6), R(4))

for N in range(4, 1000):
    if R(N) > 50:
        print(N)
        break

Ответ: \(19\)