Задание 5. Информатика. ЕГЭ. Поляков-1785

Просмотры: 17
Изменено: 6 апреля 2025

На вход алгоритма подаётся натуральное число \(N.\) Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N.\)
  2. Затем справа дописываются два разряда: символы \(01,\) если число \(N\) чётное, и \(10,\) если нечётное.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N)\) является двоичной записью искомого числа \(R.\) Укажите минимальное число \(R,\) большее \(130,\) которое может являться результатом работы этого алгоритма. В ответе это число запишите в десятичной системе.

Решение:

Python


def R(N):
    return (N << 2) + N % 2 + 1

print(min(R(N) for N in range(1, 200) if R(N) > 130))

Ответ: \(134\)