Информатика. ЕГЭ 5

Информатика. ЕГЭ

Задания для подготовки

Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников

Задание 5. Информатика. ЕГЭ 2024. Крылов-19

Просмотры: 250
Изменено: 1 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. Каждый разряд этой записи заменяется двумя разрядами по следующему правилу: если в разряде стоит \(0\), то вместо него пишется \(00\); если в разряде стоит \(1\), то \(1\) заменяется на \(11\).
    Например, двоичная запись \(1001\) числа \(9\) будет преобразована в \(11000011\).

Полученная таким образом запись (в ней в два раза больше разрядов, чем в записи исходного числа \(N\)) является двоичной записью числа \(R\) — результата работы данного алгоритма.

Укажите минимальное число \(R\), большее \(32\), которое может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Показать решение...


Задание 5. Информатика. ЕГЭ 2024. Крылов-18

Просмотры: 298
Изменено: 1 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Из числа \(N\) вычитается остаток от деления \(N\) на \(8\), после чего прибавляется остаток от деления \(N\) на \(2\).
  2. Строиться двоичная запись полученного результата.
  3. К этой записи дописываются справа ещё два разряда по следующему правилу:
    1. складываются все цифры построенной двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    2. над этой записью производятся те же действия — справа дописывается остаток от деления суммы её цифр на \(2\).

Полученная таким образом запись является двоичной записью искомого числа \(R\).

Укажите минимальное число \(R\), большее \(97\), которое может являться результатом работы данного алгоритма. В ответе запишите это число в десятичной системе счисления.

Показать решение...


Задание 5. Информатика. ЕГЭ 2024. Крылов-17

Просмотры: 759
Изменено: 1 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Из числа \(N\) вычитается остаток от деления \(N\) на \(8\), после чего прибавляется остаток от деления \(N\) на \(2\).
  2. Строиться двоичная запись полученного результата.
  3. К этой записи дописываются справа ещё два разряда по следующему правилу:
    1. складываются все цифры построенной двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    2. над этой записью производятся те же действия — справа дописывается остаток от деления суммы её цифр на \(2\).

Полученная таким образом запись является двоичной записью искомого числа \(R\).

Укажите минимальное число \(R\), большее \(90\), которое может являться результатом работы данного алгоритма. В ответе запишите это число в десятичной системе счисления.

Показать решение...


Задание 5. Информатика. ЕГЭ 2024. Крылов-16

Просмотры: 234
Изменено: 2 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Из числа \(N\) вычитается остаток от деления \(N\) на \(4\).
  2. Строиться двоичная запись полученного результата.
  3. К этой записи дописываются справа ещё два разряда по следующему правилу:
    1. складываются все цифры построенной двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    2. над этой записью производятся те же действия — справа дописывается остаток от деления суммы её цифр на \(2\).

Полученная таким образом запись является двоичной записью искомого числа \(R\).

Укажите такое наибольшее число \(N\), для которого результат работы данного алгоритма меньше числа \(47\). В ответе запишите это число в десятичной системе счисления.

Показать решение...


Задание 5. Информатика. ЕГЭ 2024. Крылов-15

Просмотры: 217
Изменено: 2 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Из числа \(N\) вычитается остаток от деления \(N\) на \(4\).
  2. Строиться двоичная запись полученного результата.
  3. К этой записи дописываются справа ещё два разряда по следующему правилу:
    1. складываются все цифры построенной двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    2. над этой записью производятся те же действия — справа дописывается остаток от деления суммы её цифр на \(2\).

Полученная таким образом запись является двоичной записью искомого числа \(R\).

Укажите такое наибольшее число \(N\), для которого результат работы данного алгоритма меньше числа \(64\). В ответе запишите это число в десятичной системе счисления.

Показать решение...


Задание 5. Информатика. ЕГЭ 2024. Крылов-14

Просмотры: 210
Изменено: 2 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Из числа \(N\) вычитается остаток от деления \(N\) на \(4\).
  2. Строиться двоичная запись полученного результата.
  3. К этой записи дописываются справа ещё два разряда по следующему правилу:
    1. складываются все цифры построенной двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    2. над этой записью производятся те же действия — справа дописывается остаток от деления суммы её цифр на \(2\).

Полученная таким образом запись является двоичной записью искомого числа \(R\).

Укажите минимальное число \(R\), большее \(100\), которое может являться результатом работы данного алгоритма. В ответе запишите это число в десятичной системе счисления.

Показать решение...