Информатика. ЕГЭ 16

Информатика. ЕГЭ

Задания для подготовки

Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников

Задание 16. Информатика. Статград-22-2-2

Просмотры: 13
Изменено: 14 сентября 2024

Обозначим остаток от деления натурального числа \( a \) на натуральное число \(b\) как \( a \mod b\).

Алгоритм вычисления значения функции \( F(n) \), где \( n \) — целое неотрицательное число, задан следующими соотношениями:

\( F(0) = 0;\)
\( F(n) = F(n-1) + 1, \) если \( n>0\) и при этом \( n\mod 3 = 2\);
\( F(n) = F((n - n \mod 3) / 3), \) если \( n > 0 \) и при этом \( n \mod 3 < 2 \).

Укажите наименьшее возможное \( n \), для которого \( F(n) = 5 \).

Показать решение...


Задание 16. Информатике. Статград-22-2-1

Просмотры: 56
Изменено: 16 сентября 2024

Обозначим остаток от деления натурального числа \( a \) на натуральное число \(b\) как \( a \mod b\).

Алгоритм вычисления значения функции \( F(n) \), где \( n \) — целое неотрицательное число, задан следующими соотношениями:

\( F(0) = 0;\)
\( F(n) = F(n-1) + 1, \) если \( n>0\) и при этом \( n\mod 3 = 2\);
\( F(n) = F((n - n \mod 3) / 3), \) если \( n > 0 \) и при этом \( n \mod 3 < 2 \).

Укажите наименьшее возможное \( n \), для которого \( F(n) = 6 \).

Показать решение...


Задание 16. Информатика. Статград-22-1-2

Просмотры: 44
Изменено: 16 сентября 2024

Алгоритм вычисления значения функции \( F(n) \), где \( n \) — целое неотрицательное число, задан следующими соотношениями:

\( F(0) = 0;\)
\( F(n) = F(n/2), \) если \( n>0\) и при этом \( n \) чётно;
\( F(n) = 1 + F(n-1), \) если \( n \) нечётно.

Сколько существует таких чисел \( n \), что \( 1 \leqslant n \leqslant 900 \) и \( F(n) = 9 \)?

Показать решение...


Задание 16. Информатика. Статград-22-1-1

Просмотры: 23
Изменено: 13 сентября 2024

Алгоритм вычисления значения функции \( F(n) \), где \( n \) — целое неотрицательное число, задан следующими соотношениями:

\( F(0) = 0;\)
\( F(n) = F(n/2), \) если \( n>0\) и при этом \( n \) чётно;
\( F(n) = 1 + F(n-1), \) если \( n \) нечётно.

Сколько существует таких чисел \( n \), что \( 1 \leqslant n \leqslant 500 \) и \( F(n) = 8 \)?

Показать решение...