Информатика. ЕГЭ 5

Информатика. ЕГЭ

Задания для подготовки

Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников

Задание 5. Информатика. ЕГЭ. Поляков-1734

Просмотры: 17
Изменено: 6 апреля 2025

На вход алгоритма подаётся натуральное число \(N.\) Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N.\)
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    • а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001;\)
    • б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на \(2.\)

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R.\) Какое наименьшее число, большее \(90,\) может быть получено в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1733

Просмотры: 33
Изменено: 6 апреля 2025

На вход алгоритма подаётся натуральное число \(N.\) Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N.\)
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    • а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001;\)
    • б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на \(2.\)

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R.\) Какое наименьшее число, большее \(80,\) может быть получено в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1732

Просмотры: 396
Изменено: 1 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, меньших \(50\), могут появиться на экране в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1731

Просмотры: 372
Изменено: 1 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, меньших \(80\), могут появиться на экране в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1730

Просмотры: 311
Изменено: 31 января 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, меньших \(100\), могут появиться на экране в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1729

Просмотры: 364
Изменено: 1 февраля 2025

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, принадлежащих отрезку \([20; \, 50]\), могут появиться на экране в результате работы автомата?

Показать решение...