Информатика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
(В. Шубинкин) В ходе эксперимента были зафиксированы очаги радиации. Чтобы изучить данное явление, решили провести кластеризацию источников излучения. Кластер – это набор источников (точек) на графике, лежащий внутри прямоугольника высотой \(H\) и шириной \(W\). Каждая точка обязательно принадлежит только одному из кластеров. Истинный центр кластера, или центроид, – это одна из точек на графике, сумма расстояний от которой до всех остальных точек кластера минимальна. Расстояние между двумя точками \(A(x_1, \, y_1)\) и \(B(x_2, \, y_2)\) вычисляется по формуле: $$ d(A, \, B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} $$ Аномалиями назовём совокупности из не более чем \(10\) точек, каждая из которых находится на расстоянии более одной условной единицы от точек кластеров. Аномалии в расчётах не учитываются. Даны два входных файла (файл A и файл Б). В файле A хранятся данные о точках двух кластеров. В каждой строке записана информация о расположении одной точки: сначала координата \(x\), затем координата \(y\) (в условных единицах). Известно, что количество точек не превышает \(1000\). В файле Б той же структуры хранятся данные о трёх кластерах. Известно, что количество точек не превышает \(10~000\). Структура хранения информации о точках в файле Б аналогична файлу А. Возможные данные одного из файлов иллюстрированы графиком. Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: \(P_x\) – среднее арифметическое абсцисс центров кластеров, и \(P_y\) – среднее арифметическое ординат центров кластеров. В ответе запишите четыре числа: в первой строке сначала целую часть произведения \(P_x \times 100~000\), затем целую часть произведения \(P_y \times 100~000\) для файла А, во второй строке – аналогичные данные для файла Б.
(В. Шубинкин) При проведении эксперимента заряженные частицы попадают на чувствительный экран размером \(12\) на \(9\) условных единиц. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания в условных единицах. При анализе результатов выделяют кластеры – группы точек на экране, в которые попали частицы. Каждая точка принадлежит только одному кластеру. Минимальное (максимальное) расстояние между кластерами – это минимальное (максимальное) расстояние между двумя точками, одна из которых принадлежит одному кластеру, а вторая – другому. Расстояние между двумя точками \(A(x_1, \, y_1)\) и \(B(x_2, \, y_2)\) вычисляется по формуле: $$ d(A, \, B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} $$ Аномалиями назовём совокупности из не более чем \(10\) точек, каждая из которых находится на расстоянии более одной условной единицы от точек кластеров. Аномалии в расчётах не учитываются. Даны два входных файла (файл A и файл Б). В файле A хранятся данные о частицах двух кластеров. В каждой строке записана информация о расположении на карте одной точки: сначала координата \(x\), затем координата \(y\) (в условных единицах). Известно, что количество точек не превышает \(1000\). В файле Б хранятся данные о трёх кластерах. Известно, что количество точек не превышает \(10~000\). Структура хранения информации о точках в файле Б аналогична файлу А. Возможные данные одного из файлов иллюстрированы графиком. Для каждого файла определите минимальное \(d_{min}\) и максимальное \(d_{max}\) расстояния между двумя кластерами. В ответ запишите \(4\) числа: в первой строке целую часть произведения \(d_{min} \times 10~000\), затем целую часть произведения \(d_{max} \times 10~000\) для файла А, во второй строке – аналогичные данные для файла Б.
Учёный решил провести кластеризацию некоторого множества звёзд по их расположению на карте звёздного неба. Кластер звёзд – это набор звёзд (точек) на графике. Каждая звезда обязательно принадлежит только одному из кластеров. Центр кластера, или центроид, – это одна из звёзд на графике, сумма расстояний от которой до всех остальных звёзд кластера минимальна. Расстояние между двумя точками \(A (x_1, \, y_1)\) и \(B(x_2, \, y_2)\) вычисляется по формуле: $$ d(A, \, B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} $$ Даны два входных файла (файл A и файл Б). В файле A хранятся данные о звёздах двух кластеров. В каждой строке записана информация о расположении на карте одной звезды: сначала координата \(x\), затем координата \(y\) (в условных единицах). Известно, что количество звёзд не превышает \(1000\). В файле Б хранятся данные о звёздах трёх кластеров. Известно, что количество звёзд не превышает \(10~000\). Структура хранения информации о звездах в файле Б аналогична файлу А. Возможные данные одного из файлов иллюстрированы графиком.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: \(P_x\) – среднее арифметическое абсцисс центров кластеров, и \(P_y\) – среднее арифметическое ординат центров кластеров. В ответе запишите четыре числа: в первой строке сначала целую часть произведения \(P_x \times 10~000\), затем целую часть произведения \(P_y \times 10~000\) для файла А, во второй строке – аналогичные данные для файла Б.
Учёный решил провести кластеризацию некоторого множества звёзд по их расположению на карте звёздного неба. Кластер звёзд – это набор звёзд (точек) на графике. Каждая звезда обязательно принадлежит только одному из кластеров. Центр кластера, или центроид, – это одна из звёзд на графике, сумма расстояний от которой до всех остальных звёзд кластера минимальна. Расстояние между двумя точками \(A (x_1, \, y_1)\) и \(B(x_2, \, y_2)\) вычисляется по формуле: $$ d(A, \, B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} $$ Даны два входных файла (файл A и файл Б). В файле A хранятся данные о звёздах двух кластеров. В каждой строке записана информация о расположении на карте одной звезды: сначала координата \(x\), затем координата \(y\) (в условных единицах). Известно, что количество звёзд не превышает \(1000\). В файле Б хранятся данные о звёздах трёх кластеров. Известно, что количество звёзд не превышает \(10~000\). Структура хранения информации о звездах в файле Б аналогична файлу А. Возможные данные одного из файлов иллюстрированы графиком.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: \(P_x\) – среднее арифметическое абсцисс центров кластеров, и \(P_y\) – среднее арифметическое ординат центров кластеров. В ответе запишите четыре числа: в первой строке сначала целую часть произведения \(P_x \times 10~000\), затем целую часть произведения \(P_y \times 10~000\) для файла А, во второй строке – аналогичные данные для файла Б.
Учёный решил провести кластеризацию некоторого множества звёзд по их расположению на карте звёздного неба. Кластер звёзд – это набор звёзд (точек) на графике. Каждая звезда обязательно принадлежит только одному из кластеров. Центр кластера, или центроид, – это одна из звёзд на графике, сумма расстояний от которой до всех остальных звёзд кластера минимальна. Расстояние между двумя точками \(A (x_1, \, y_1)\) и \(B(x_2, \, y_2)\) вычисляется по формуле: $$ d(A, \, B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} $$ Даны два входных файла (файл A и файл Б). В файле A хранятся данные о звёздах двух кластеров. В каждой строке записана информация о расположении на карте одной звезды: сначала координата \(x\), затем координата \(y\) (в условных единицах). Известно, что количество звёзд не превышает \(1000\). В файле Б хранятся данные о звёздах трёх кластеров. Известно, что количество звёзд не превышает \(10~000\). Структура хранения информации о звездах в файле Б аналогична файлу А. Возможные данные одного из файлов иллюстрированы графиком.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: \(P_x\) – среднее арифметическое абсцисс центров кластеров, и \(P_y\) – среднее арифметическое ординат центров кластеров. В ответе запишите четыре числа: в первой строке сначала целую часть произведения \(P_x \times 10~000\), затем целую часть произведения \(P_y \times 10~000\) для файла А, во второй строке – аналогичные данные для файла Б.