Информатика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
- Просмотры: 13
- Изменено: 14 апреля 2025
(С. Скопинцева) Алгоритм получает на вход натуральное число \(N > 1\) и строит по нему новое число \(R\) следующим образом:
- Число \(N\) переводим в двоичную запись.
- К этой записи справа дописывается один разряд по следующему правилу: если количество единиц в двоичной записи числа больше количества нулей, то справа дописывается единица, иначе дописывается \(0.\)
- К полученной записи повторно применяется алгоритм из п. 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N)\) является двоичной записью искомого числа \(R.\) Укажите наибольшее число \(R,\) меньшее \(57,\) которое может быть получено в результате работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
Показать решение...
- Просмотры: 20
- Изменено: 14 апреля 2025
(А. Богданов) Алгоритм получает на вход натуральное число \(N > 1\) и строит по нему новое число \(R\) следующим образом:
- Число \(N\) переводим в двоичную запись.
- Инвертируем все биты числа кроме первого.
- Переводим в десятичную запись.
- Складываем результат с исходным числом \(N.\)
Полученное число является искомым числом \(R.\) Укажите наименьшее нечетное число \(N\), для которого результат работы данного алгоритма больше \(99.\) В ответе это число запишите в десятичной системе счисления.
Показать решение...
- Просмотры: 8
- Изменено: 14 апреля 2025
Алгоритм получает на вход натуральное число \(N > 1\) и строит по нему новое число \(R\) следующим образом:
- Если исходное число кратно \(3,\) оно делится на \(3,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(5,\) оно делится на \(5,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(11,\) оно делится на \(11,\) иначе из него вычитается \(1.\)
- Число, полученное на шаге 3, считается результатом работы алгоритма.
Сколько существует различных натуральных чисел \(N,\) при обработке которых получится \(R = 8?\)
Показать решение...
- Просмотры: 16
- Изменено: 14 апреля 2025
Алгоритм получает на вход натуральное число \(N > 1\) и строит по нему новое число \(R\) следующим образом:
- Если исходное число кратно \(3,\) оно делится на \(3,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(7,\) оно делится на \(7,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(11,\) оно делится на \(11,\) иначе из него вычитается \(1.\)
- Число, полученное на шаге 3, считается результатом работы алгоритма.
Сколько существует различных натуральных чисел \(N,\) при обработке которых получится \(R = 6?\)
Показать решение...
- Просмотры: 11
- Изменено: 14 апреля 2025
Алгоритм получает на вход натуральное число \(N > 1\) и строит по нему новое число \(R\) следующим образом:
- Если исходное число кратно \(2,\) оно делится на \(2,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(5,\) оно делится на \(5,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(7,\) оно делится на \(7,\) иначе из него вычитается \(1.\)
- Число, полученное на шаге 3, считается результатом работы алгоритма.
Сколько существует различных натуральных чисел \(N,\) при обработке которых получится \(R = 6?\)
Показать решение...
- Просмотры: 12
- Изменено: 14 апреля 2025
Алгоритм получает на вход натуральное число \(N > 1\) и строит по нему новое число \(R\) следующим образом:
- Если исходное число кратно \(2,\) оно делится на \(2,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(3,\) оно делится на \(3,\) иначе из него вычитается \(1.\)
- Если полученное на предыдущем шаге число кратно \(7,\) оно делится на \(7,\) иначе из него вычитается \(1.\)
- Число, полученное на шаге 3, считается результатом работы алгоритма.
Сколько существует различных натуральных чисел \(N,\) при обработке которых получится \(R = 2?\)
Показать решение...