Информатика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
В системе счисления с некоторым основанием \(p\) выполняется равенство $$y3y + y65 = x2z0$$ Буквами \(x\), \(y\) и \(z\) обозначены некоторые цифры из алфавита системы счисления с основанием \(p\). Запишите в ответе значение числа \(xyz_p\) в десятичной системе счисления.
(PRO100 ЕГЭ) Операнды арифметического выражения записаны в системе счисления с основанием \(68\): $$123x5_{68} + 1x233_{68}$$ В записи чисел переменной \(x\) обозначена неизвестная цифра из алфавита \(68\)-ричной системы счисления. Определите наибольшее значение \(x\), при котором значение данного арифметического выражения кратно \(12\). Для найденного значения \(x\) вычислите частное от деления значения арифметического выражения на \(12\) и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
*Требуется подобрать основания систем счисления \(p\) и \(q\) \((\max(q, p) < 100)\), так чтобы выполнялось равенство $$abc1_p = bc1d_q$$ где \(a\), \(b\), \(c\), \(d\) – различные цифры десятичной системы счисления. Если есть несколько вариантов решения задачи, выберите тот, где значение \(p\) наибольшее. В ответе укажите десятичное представление любого из чисел для найденных \(p\) и \(q\).
(А. Богданов) Требуется подобрать основания систем счисления \(p\) и \(q\) \((\max(q, p) < 100)\), так чтобы выполнялось равенство $$ABC_p = BCD_q$$ где цифры \(A\), \(B\), \(C\), \(D\) имеют те же значения, что и в шестнадцатеричной системе счисления. Если есть несколько вариантов решения задачи, выберите тот, где значение \(p\) наибольшее. В ответе укажите десятичное представление любого из чисел для найденных \(p\) и \(q\).
(Д. Статный) Дано арифметическое выражение: $$3x21_{81} + 17x4_{67}$$ В записи чисел переменной \(x\) обозначена одинаковая неизвестная допустимая цифра из алфавита указанных систем счисления. Определите наибольшее значение \(x\), при котором значение данного арифметического выражения кратно \(35\). Для найденного значения \(x\) вычислите частное от деления значения арифметического выражения на \(35\) и укажите его в ответе в десятичной системе счисления.