Информатика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
На числовой прямой даны три отрезка: \(P = [153697; \, 780411],\) \(Q = [275071; \, 904082],\) \(R = [722050; \, 984086].\) Укажите наименьшую возможную длину такого отрезка \(A,\) для которого логическое выражение $$(\neg (x \in A)) \to (((x \in P) \equiv (x \in Q)) \to ((x \in R) \equiv (x \in Q)))$$ истинно (т.е. принимает значение \(1\)) при любом значении переменной \(x.\)
На числовой прямой даны три отрезка: \(P = [3; \, 43],\) \(Q = [18; \, 91],\) \(R = [72; \, 115].\) Укажите наименьшую возможную длину такого отрезка \(A,\) для которого логическое выражение $$ (x \in Q) \to (\neg (x \in P) \to ((\neg (x \in R) \land \neg (x \in A)) \to \neg (x \in Q))) $$ истинно (т.е. принимает значение \(1\)) при любом значении переменной \(x\).
(Л. Шастин) Обозначим через \(mod (m, \, n)\) остаток от деления \(m\) на \(n.\) Для какого наименьшего натурального числа \(A\) значение выражения $$(A + 2x > 400 - A) \land (mod (A, \, 100) + mod(120, \, A) > 140)$$ тождественно истинно, т.е. принимает значение \(1\) при любом натуральном значении переменной \(x\)?
(Л. Шастин) Обозначим через ДЕЛ(\(n\), \(m\)) утверждение «натуральное число \(n\) делится без остатка на \(m\)»; и пусть на числовой прямой дан отрезок \(B = [170; \, 220].\)
Определите количество натуральных значений числа \(A\), при которых формула $$ ДЕЛ(x, \, A) \lor ((x \in B) \to \neg ДЕЛ(x, \, 24)) $$ тождественно истинна (т.е. принимает значение \(1\)) при любых значениях \(x.\)
(Л. Шастин) Для какого наибольшего целого неотрицательного числа \(A\) формула $$\neg((x < 7) \lor (y \geqslant 5x + A - 60) \lor (x \geqslant 36) \lor (y < 225))$$ тождественна ложно, т.е. принимает значение \(0\) при любых целых неотрицательных \(x\) и \(y.\)
(Д. Бахтиев) На числовой прямой даны два отрезка: \(C = [48; \, 94]\) и \(J = [83; \, 100].\) Укажите наибольшую возможную длину такого отрезка \(A\), для которого логическое выражение $$\neg (( x \in C) \lor (x \in J)) \to \neg (x \in A)$$ истинно (т.е. принимает значение \(1\)) при любом натуральном значении переменной \(x?\)