Информатика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.
Полученная таким образом запись является двоичной записью искомого числа \(R\).
Например, для исходного числа \(5 = 101_2\) результатом является число \(101_2 = 5_{10}\), а для исходного числа \(2_{10} = 10_2\) результатом является число \(110_2 = 6_{10}\).
Укажите максимальное число \(N\), после обработки которого с помощью этого алгоритма получается число \(R\), не меньшее, чем \(26\). В ответе запишите это число в десятичной системе счисления.
На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.
Например, для исходного числа \(6 = 110_2\) результатом является число \(1000_2 = 8\), а для исходного числа \(4 = 100_2\) это число \(1101_2 = 13\).
Укажите минимальное число \(N\), после обработки которого с помощью этого алгоритма получается число \(R\), большее \(50\).
В ответе запишите это число в десятичной системе счисления.
На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.
Полученная таким образом запись является двоичной записью искомого числа \(R\).
Например, для исходного числа \(5 = 101_2\) результатом является число \(101_2 = 5_{10}\), а для исходного числа \(2_{10} = 10_2\) результатом является число \(110_2 = 6_{10}\).
Укажите минимальное число \(N\), после обработки которого с помощью этого алгоритма получается число \(R\), не меньшее, чем \(26\). В ответе запишите это число в десятичной системе счисления.
На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.
Полученная таким образом запись является двоичной записью искомого числа \(R\).
Например, для исходного числа \(6 = 110_2\) результатом является число \(1000_2 = 8_{10}\), а для исходного числа \(3 = 11_2\) это число \(111_2 = 7_{10}\).
Укажите максимальное число \(N\), после обработки которого с помощью этого алгоритма получается число \(R\), не большее, чем \(37\). В ответе запишите это число в десятичной системе счисления.
На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.
Полученная таким образом запись является двоичной записью искомого числа \(R\).
Например, для исходного числа \(6 = 110_2\) результатом является число \(1000_2 = 8_{10}\), а для исходного числа \(3 = 11_2\) это число \(111_2 = 7_{10}\).
Укажите минимальное число \(N\), после обработки которого с помощью этого алгоритма получается число \(R\), не меньшее, чем \(26\). В ответе запишите это число в десятичной системе счисления.