Информатика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
На числовой прямой даны два отрезка: \(P = [15; \, 40]\) и \(Q = [21; \, 63].\) Укажите наименьшую возможную длину такого отрезка \(A\), для которого логическое выражение $$ (x \in P) \to (((x \in Q) \land \neg (x \in A)) \to \neg (x \in P)) $$ истинно (т.е. принимает значение \(1\)) при любом значении переменной \(x\).
Для какого наименьшего целого неотрицательного числа \(A\) выражение $$(x - 3y < A) \lor (y > 400) \lor (x > 56)$$ тождественно истинно, т.е. принимает значение \(1\) при любых целых положительных \(x\) и \(y?\)
Обозначим через \(m\&n\) поразрядную конъюнкцию неотрицательных целых чисел \(m\) и \(n.\) Например, \(14 \& 5 = 1110_2 \& 0101_2 = 0100_2 = 4.\) Для какого наименьшего неотрицательного целого числа \(А\) формула $$(x \& 5160 > 0 \lor x \& 3650 > 0) \to (x \& 9545 = 0 \to x \& А > 0)$$ тождественно истинна (т. е. принимает значение \(1\) при любом неотрицательном целом значении переменной \(x\))?
На числовой прямой даны три отрезка: \(P = [153697; \, 780411],\) \(Q = [275071; \, 904082],\) \(R = [722050; \, 984086].\) Укажите наименьшую возможную длину такого отрезка \(A,\) для которого логическое выражение $$(\neg (x \in A)) \to (((x \in P) \equiv (x \in Q)) \to ((x \in R) \equiv (x \in Q)))$$ истинно (т.е. принимает значение \(1\)) при любом значении переменной \(x.\)
На числовой прямой даны три отрезка: \(P = [3; \, 43],\) \(Q = [18; \, 91],\) \(R = [72; \, 115].\) Укажите наименьшую возможную длину такого отрезка \(A,\) для которого логическое выражение $$ (x \in Q) \to (\neg (x \in P) \to ((\neg (x \in R) \land \neg (x \in A)) \to \neg (x \in Q))) $$ истинно (т.е. принимает значение \(1\)) при любом значении переменной \(x\).
(Л. Шастин) Обозначим через \(mod (m, \, n)\) остаток от деления \(m\) на \(n.\) Для какого наименьшего натурального числа \(A\) значение выражения $$(A + 2x > 400 - A) \land (mod (A, \, 100) + mod(120, \, A) > 140)$$ тождественно истинно, т.е. принимает значение \(1\) при любом натуральном значении переменной \(x\)?