Информатика. ЕГЭ 5

Информатика. ЕГЭ

Задания для подготовки

Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников

Задание 5. Информатика. ЕГЭ. Поляков-1732

Просмотры: 103
Изменено: 24 ноября 2024

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, меньших \(50\), могут появиться на экране в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1731

Просмотры: 134
Изменено: 24 ноября 2024

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, меньших \(80\), могут появиться на экране в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1730

Просмотры: 96
Изменено: 24 ноября 2024

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, меньших \(100\), могут появиться на экране в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1729

Просмотры: 99
Изменено: 24 ноября 2024

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, принадлежащих отрезку \([20; \, 50]\), могут появиться на экране в результате работы автомата?

Показать решение...


Задание 5. Информатика. ЕГЭ. Поляков-1728

Просмотры: 104
Изменено: 24 ноября 2024

На вход алгоритма подаётся натуральное число \(N\). Алгоритм строит по нему новое число \(R\) следующим образом.

  1. Строится двоичная запись числа \(N\).
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
    а) складываются все цифры двоичной записи, и остаток от деления суммы на \(2\) дописывается в конец числа (справа). Например, запись \(11100\) преобразуется в запись \(111001\);
    б) над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на \(2\).
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа \(N\)) является двоичной записью искомого числа \(R\). Сколько различных чисел, принадлежащих отрезку \([90; \, 160]\), могут появиться на экране в результате работы автомата?

Показать решение...